Force, torque, and energy 7.5

Electromagnetic force and torque

Force between two static charges: Coulomb's law	$\boldsymbol{F}_2 = \frac{q_1 q_2}{4\pi\epsilon_0 r_{12}^2} \hat{\boldsymbol{r}}_{12}$	(7.119)	F_2 $q_{1,2}$ r_{12} ϵ_0	force on q_2 charges vector from 1 to 2 unit vector permittivity of free space
Force between two current-carrying elements	$dF_2 = \frac{\mu_0 I_1 I_2}{4\pi r_{12}^2} [dI_2 \times (dI_2 \times dI_2)]$	$\mathbf{d}I_1 \times \hat{\mathbf{r}}_{12})]$ (7.120)	$\begin{array}{c} dI_{1,2} \\ I_{1,2} \\ dF_2 \\ \mu_0 \end{array}$	line elements currents flowing along dI_1 and dI_2 force on dI_2 permeability of free space
Force on a current-carrying element in a magnetic field	$\mathrm{d} \pmb{F} = I \mathrm{d} \pmb{I} \! imes \! \pmb{B}$	(7.121)	d <i>I</i> F I B	line element force current flowing along dI magnetic flux density
Force on a charge (Lorentz force)	$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	(7.122)	E v	electric field charge velocity
Force on an electric dipole ^a	$F = (p \cdot \nabla)E$	(7.123)	p	electric dipole moment
Force on a magnetic dipole ^b	$F = (m \cdot \nabla)B$	(7.124)	m	magnetic dipole moment
Torque on an electric dipole	$G = p \times E$	(7.125)	G	torque
Torque on a magnetic dipole	$G = m \times B$	(7.126)		
Torque on a current loop	$G = I_{L} \oint_{\text{loop}} r \times (dI_{L} \times B)$		$I_{\rm L}$	current around loop

 $^{{}^{}a}F$ simplifies to $\nabla(p \cdot E)$ if p is intrinsic, $\nabla(pE/2)$ if p is induced by E and the medium is isotropic. bF simplifies to $\nabla(m \cdot B)$ if m is intrinsic, $\nabla(mB/2)$ if m is induced by B and the medium is isotropic.

Electromagnetic energy

Electromagnetic field energy density (in free space)	$u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2}\frac{B^2}{\mu_0}$	(7.128)	u E B	energy density electric field magnetic flux density
Energy density in media	$u = \frac{1}{2}(\boldsymbol{D} \cdot \boldsymbol{E} + \boldsymbol{B} \cdot \boldsymbol{H})$	(7.129)	$egin{array}{c} \epsilon_0 \\ \mu_0 \\ oldsymbol{D} \\ oldsymbol{H} \end{array}$	permittivity of free space permeability of free space electric displacement magnetic field strength
Energy flow (Poynting) vector	$N = E \times H$	(7.130)	c N	speed of light energy flow rate per unit area ⊥ to the flow direction
Mean flux density at a distance r from a short oscillating dipole	$\langle N \rangle = \frac{\omega^4 p_0^2 \sin^2 \theta}{32\pi^2 \epsilon_0 c^3 r^3} \mathbf{r}$	(7.131)	 P0 r θ ω 	amplitude of dipole moment vector from dipole (\gg wavelength) angle between p and r oscillation frequency
Total mean power from oscillating dipole ^a	$W = \frac{\omega^4 p_0^2 / 2}{6\pi \epsilon_0 c^3}$	(7.132)	W	total mean radiated power
Self-energy of a charge distribution	$U_{\text{tot}} = \frac{1}{2} \int_{\text{volume}} \phi(\mathbf{r}) \rho(\mathbf{r}) d\tau$	(7.133)	$egin{array}{c} U_{ m tot} \ d au \ oldsymbol{r} \ oldsymbol{ ho} \ oldsymbol{ ho} \end{array}$	total energy volume element position vector of $d\tau$ electrical potential charge density
Energy of an assembly of capacitors ^b	$U_{\text{tot}} = \frac{1}{2} \sum_{i} \sum_{j} C_{ij} V_i V_j$	(7.134)	V_i C_{ij}	potential of <i>i</i> th capacitor mutual capacitance between capacitors <i>i</i> and <i>j</i>
Energy of an assembly of inductors ^c	$U_{\text{tot}} = \frac{1}{2} \sum_{i} \sum_{j} L_{ij} I_i I_j$	(7.135)	L_{ij}	mutual inductance between inductors i and j
Intrinsic dipole in an electric field	$U_{\rm dip} = -\boldsymbol{p} \cdot \boldsymbol{E}$	(7.136)	$egin{array}{c} U_{ m dip} \ m{p} \end{array}$	energy of dipole electric dipole moment
Intrinsic dipole in a magnetic field	$U_{\rm dip} = -\boldsymbol{m} \cdot \boldsymbol{B}$	(7.137)	m	magnetic dipole moment
Hamiltonian of a charged particle in an EM field ^d	$H = \frac{ \boldsymbol{p_m} - q\boldsymbol{A} ^2}{2m} + q\boldsymbol{\phi}$	(7.138)	H	Hamiltonian particle momentum particle charge particle mass magnetic vector potential

^aSometimes called "Larmor's formula." ${}^bC_{ii}$ is the self-capacitance of the *i*th body. Note that $C_{ij} = C_{ji}$. ${}^cL_{ii}$ is the self-inductance of the *i*th body. Note that $L_{ij} = L_{ji}$. d Newtonian limit, i.e., velocity $\ll c$.